Rice, R. H., & Green, H. (1978) J. Cell. Biol. 76, 705-711. Sakata, Y., & Aoki, N. (1980) J. Clin. Invest. 65, 290-297. Sakata, Y., & Aoki, N. (1982) J. Clin. Invest. 69, 536-542. Sanger, F., Nicklen, S., & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 5463-5467.

Siefring, G. E., Apostol, A. B., Velasco, P. T., & Lorand, L. (1978) *Biochemistry 17*, 2598-2604.

Slife, C. W., Dorsett, M. D., & Tillotson, M. L. (1986) J. Biol. Chem. 261, 3451-3456.

Takahashi, N., Takahashi, Y., & Putnam, F. W. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8019-8023.

Thomas, P. S. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5201-5205.

Tufty, R. M., & Kretsinger, R. H. (1975) Science (Washington, D.C.) 187, 167-169.

Williams, J. G., & Mason, P. J. (1985) in Nucleic Acid Hybridisation: A Practical Approach (Hames, B. D., & Higgins, S. J., Eds.) pp 139–160, IRL, Eynsham, Oxford. Williams-Ashman, H. G. (1984) Mol. Cell. Biochem. 58,

Yoshikawa, M., Goto, M., Ikura, K., Sasaki, R., & Chiba, H. (1982) Agric. Biol. Chem. 46, 207-213.

## Proximity of Thiol Esters and Bait Region in Human $\alpha_2$ -Macroglobulin: Paramagnetic Mapping<sup>†</sup>

Peter Gettins,\*, Albert H. Beth, and Leon W. Cunningham

Department of Biochemistry and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

Received October 5, 1987; Revised Manuscript Received November 20, 1987

ABSTRACT: The two key structural features of  $\alpha_2$ -macroglobulin ( $\alpha_2$ M) involved in inhibitory caging of proteases are the thiol ester and the bait region. This paper examines the environment of the hydrolyzed thiol ester in methylamine-treated human  $\alpha_2 M$  and the separation between the bait region and the thiol ester and between the four thiol esters in the tetramer to try to further our understanding of how bait region proteolysis triggers thiol ester cleavage. The sulfhydryl groups of Cys-949, formed upon cleavage of the thiol ester by methylamine, were specifically labeled with the nitroxide spin-labels 3-(2-iodoacetamido)-PROXYL (iodo-I) (PROXYL = 2,2,5,5-tetramethylpyrrolidine-1-oxyl), 3-[2-(2-iodoacetamido)acetamido]-PROXYL (iodo-II), and 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine-1-oxyl (iodo-III). ESR spectra of these  $\alpha_2$ M derivatives showed that label I is firmly held and label II has limited freedom of rotation consistent with location of the cysteine residue in a narrow cavity. Label III has much greater motional freedom. From the absence of dipole-dipole splittings in the ESR spectra, it is concluded that the four nitroxide groups in the tetramer are more than 20 Å apart for both label I and label II. Label I broadens <sup>1</sup>H NMR signals from one phenylalanyl, one tyrosyl, and four histidyl residues in the bait region. Separations of 11-17 Å are estimated between the nitroxide of label I and these residues. Label II is further away and only broadens resonances from one of the histidines. The bait region is thus shown to be quite close to the thiol ester in the methylamine-treated form of  $\alpha_2$ M and in addition must have a compact structure. It is suggested that the bait region exists as a loop of two strands in  $\beta$  conformation in the native structure (as well as in the methylamine-modified form of  $\alpha_2 M$ ) and that proteolytic cleavage disrupts the loop and triggers thiol ester cleavage.

Human  $\alpha_2$ -macroglobulin  $(\alpha_2 M)^1$  is a tetrameric protease inhibitor with a number of unusual features. Rather than binding to the active sites of proteases and thereby inhibiting them,  $\alpha_2 M$  traps enzymes in a cagelike manner (Barrett & Starkey, 1973; Crews et al., 1987) and thus restricts access to high molecular weight substrates and inhibitors. The trapping or caging occurs as a result of a large-scale conformational change (Branegard et al., 1982; Björk & Fish, 1982; Dangott & Cunningham, 1982; Dangott et al., 1983), which is triggered by proteolytic cleavage of one or more of the four subunits of  $\alpha_2 M$  by the protease. These cleavages occur in the middle of the polypeptide chain, within a restricted segment

of at most 30 amino acid residues (Sottrup-Jensen et al., 1981; Mortensen et al., 1981) termed the bait region (Salvesen & Barrett, 1980). Different proteases cleave at different sites within the bait region, at positions consistent with their specificity (Sottrup-Jensen et al., 1984). A consequence of proteolytic cleavage is the scission of the internal  $\beta$ -cysteinyl- $\gamma$ -glutamyl thiol ester between Cys-949 and Glx-952, 260 residues removed from the bait region (Sottrup-Jensen et al., 1984), and a subsequent conformational change that results in trapping of the protease (Sottrup-Jensen et al., 1980; Howard, 1981; Salvesen et al., 1981). Since a similar, if not identical, conformational change can be brought about by thiol

<sup>&</sup>lt;sup>†</sup>This work was supported by Grants BRSG RR05424-24 and HL34737 from the National Institutes of Health.

<sup>\*</sup> Address correspondence to this author.

Department of Biochemistry.

Department of Molecular Physiology and Biophysics.

 $<sup>^1</sup>$  Abbreviations:  $\alpha_2 M,~\alpha_2$ -macroglobulin; DTNB, 5,5'-dithiobis(2-nitrobenzoic acid); PROXYL, 2,2,5,5-tetramethylpyrrolidine-1-oxyl; TEMPO, 2,2,6,6-tetramethylpiperidine-1-oxyl; CPMG, Carr-Purcell-Meiboom-Gill; SDS, sodium dodecyl sulfate; DSS, 2,2-dimethyl-2-silapentane-5-sulfonate.

2906 BIOCHEMISTRY GETTINS ET AL.

ester cleavage alone [using a potent nucleophile such as methylamine (Barrett, 1981; Salvesen et al., 1981; Sottrup-Jensen et al., 1981)] and since the thiol ester cleavage precedes the conformational change (Strickland & Bhattacharya, 1984) in the methylamine reaction, it seems likely that thiol ester opening is the event in the reaction with proteases necessary to precipitate the conformational change of  $\alpha_2 M$ . One explanation for the connection between proteolytic cleavage of the bait region and thiol ester hydrolysis might be a structural linkage of the bait region and thiol ester. Cleavage of the bait region at any point (determined by the reacting protease) might then result in a similar increase in accessibility of solvent to the inherently reactive thiol ester, through a localized conformational change.

This study is aimed at determining the proximity of the thiol ester and bait region to one another and the separation of thiol esters in different subunits in the conformationally altered form of  $\alpha_2 M$ . The effects of nitroxide spin-labels, specifically attached to Cys-949, on <sup>1</sup>H NMR signals from bait region residues (Gettins & Cunningham, 1986; Arakawa et al., 1986) and on their own ESR signals are used to estimate distances between thiol esters and between thiol ester and bait region. It is shown that the <sup>1</sup>H resonances from several bait region residues are substantially broadened by a short spin-label attached to Cys-949 and that these bait region residues must be between 11 and 17 Å from the nitroxide. The broadening of resonances from several residues well separated in the amino acid sequence of the bait region supports a compact loop structure for the bait region. A longer spin-label broadens resonances from only one bait region residue. The bait region and thiol ester in modified  $\alpha_2 M$  are shown by these studies to be close together. The experiments presented here do not address the proximity of these groups in native  $\alpha_2 M$ , though they may also be close together. In contrast, no indication of electron-electron dipole-dipole interaction is evident in the ESR spectra, indicating that the nitroxides attached to the four thiol esters are probably a minimum of 20 Å apart.

### MATERIALS AND METHODS

Purification of  $\alpha_2 M$ . Human  $\alpha_2 M$  was purified from human plasma by zinc chelate and Cibachrome blue affinity chromatography, as described previously (Dangott & Cunningham, 1982). The purity of each preparation was checked by polyacrylamide gel electrophoresis both under nondenaturing conditions, using 5% acrylamide slabs (Davis, 1964), and also in the presence of SDS, in 7.5% slab gels, according to the procedure of Laemmli (1970).  $\alpha_2 M$  concentrations were determined spectrophotometrically by using  $A_{280}^{1\%} = 8.9$  (Hall & Roberts, 1978; Barrett et al., 1979) and a molecular weight of 716 000 based on the primary structure (Sottrup-Jensen et al., 1984).

Preparation of  $\alpha_2 M$  Derivatives. Spin-labeled and iodo-acetamide-labeled  $\alpha_2 M$  species were prepared by the same procedure.  $\alpha_2 M$ , in 0.1 M sodium phosphate at pH 8.0, was reacted with 200 mM methylamine for 1 h at room temperature. This results in cleavage of the internal thiol ester groups and generation of one free sulfhydryl per cleaved thiol ester (Sottrup-Jensen et al., 1980). Unreacted methylamine was quickly removed from the sample by ultrafiltration in an Amicon ultrafiltration unit equipped with an XM-100A membrane: This reduced the methylamine concentration to approximately 0.5 mM. The free sulfhydryl groups were then labeled with iodoacetamide or a spin-labeled iodoacetamide derivative by use of a 20-fold molar excess of reagent. The reaction was carried out at 4 °C for 3 h. The sulfhydryl-labeled  $\alpha_2 M$  was dialyzed against 1 L of 0.1 M sodium phos-

phate buffer, pH 7.0, with three changes of dialysate. Free SH concentrations were determined colorimetrically by using DTNB after initial reaction of  $\alpha_2 M$  with methylamine and during the subsequent reaction with iodoacetamide or iodoacetamide-linked spin-labels. Typically,  $4 \pm 0.2$  SH groups were generated per  $\alpha_2 M$  tetramer upon reaction with methylamine, and complete labeling with iodoacetamide or iodoacetamido spin-labels was achieved.

ESR Measurements. Spectra were recorded on a Varian E-line ESR spectrometer operating at 9.41 GHz. The parameters employed were field set of 3350 G, sweep range of 100 G, modulation frequency of 100 kHz, modulation amplitude of 1 G, time constant of 0.032 s, microwave power of 10 mW, and scan time of 12 min. Samples were contained in a quartz flat cell of 370-μL volume (Wilmad, WG-813). The temperature of the E-238 cavity was regulated to within ±0.5 K by an E-257 VT unit by passing precooled nitrogen into the cavity through the optical port in the front. Signal averaging by an online PDP 11/73 microcomputer was necessary to achieve an acceptable signal to noise ratio. The number of scans is indicated in the figure captions.

NMR Measurements. <sup>1</sup>H NMR spectra were recorded on a 400-MHz Bruker AM400 narrow bore spectrometer equipped with a 5-mm <sup>1</sup>H probe. The probe temperature was maintained at 298 K. To remove very broad resonances arising from the bulk of the  $\alpha_2$ M protons not associated with the bait region residues, spectra were recorded with a Carr-Purcell-Meiboom-Gill pulse train  $[90^{\circ}_{x}-(\tau-180^{\circ}_{y}-\tau)n]$  (Meiboom & Gill, 1958). Values of n=6 and  $\tau=1$  ms were used. Chemical shifts are referenced relative to external DSS at 0 ppm.

Samples for NMR spectroscopy were transferred from  $H_2O$  to  $D_2O$  buffer by five or six cycles of dilution with  $D_2O$  buffer and concentration in an Amicon ultrafiltration cell. Residual  $^1H$  intensity from the HDO resonance was reduced further by a selective, low-power, saturating pulse of 0.5-s duration prior to data acquisition. Paramagnetic spin-labeled  $\alpha_2M$  species were made diamagnetic by reduction with 3 mM sodium ascorbate. The reaction was allowed to proceed for 4–6 h at room temperature. Excess ascorbate was removed by dilution/reconcentration in an ultrafiltration cell. A nitrogen atmosphere was maintained above the samples to prevent oxidation back to the paramagnetic nitroxide.

Materials. 4-(2-Iodoacetamido)-TEMPO, 3-(2-iodoacetamido)-PROXYL, and 3-[2-(2-iodoacetamido)acetamido]-PROXYL were purchased from Aldrich Chemical Co. D<sub>2</sub>O (99.8 atom %) and methylamine hydrochloride were obtained from Sigma Chemical Co.

#### RESULTS

Mobility of Nitroxide Labels Attached to Cys-949 of  $\alpha_2 M$ .  $\alpha_2$ M species labeled at the sulfhydryl moiety of Cys-949 with three different nitroxide spin-labels (Figure 1) were examined by ESR spectroscopy. The spectra, recorded at 275 K, are shown in Figure 2. The line shape and separation between high- and low-field lines for the acetamido-PROXYL spinlabeled  $\alpha_2 M$ , 69 G, indicate a rigid glass limit spectrum (Figure 2A), implying a complete immobilization of the nitroxide relative to  $\alpha_2 M$ . The rotational correlation time of  $\alpha_2 M$ has been calculated to be 720 ns by fluorescence anisotropy depolarization measurements (Pochon et al., 1978).  $\alpha_2 M$ labeled with the longer PROXYL spin-label gives a spectrum with a smaller high- to low-field line separation, 65 G, indicating some independent motion of the spin-label relative to the protein (Figure 2B). Motion is, however, still considerably restricted since the peak separation corresponds to an apparent

FIGURE 1: Spin-labels used in this study.

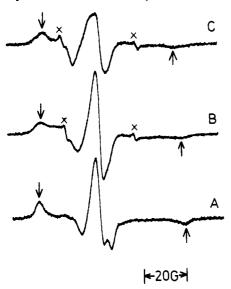



FIGURE 2: 9.4-GHz ESR spectra of methylamine-treated human  $\alpha_2 M$  spin-labeled at the sulfhydryl groups of Cys-949 at a stoichiometry of  $4 \, \blacksquare \, 0.2$  per tetramer of  $\alpha_2 M$ . Arrows indicate the positions of the high- and low-field peaks. The sharp peaks marked with an X are very minor contamination with mobile nonspecific label or free spin-label (<1%). (A) Spin-label I;  $10.9 \, \mu M \, \alpha_2 M$  in 0.1 M sodium phosphate, pH 7.0. Four scans. (B) Spin-label II;  $11.6 \, \mu M \, \alpha_2 M$  in 0.1 M sodium phosphate, pH 7.0. Four scans. (C) Spin-label III;  $11.3 \, \mu M \, \alpha_2 M$  in 0.1 M sodium phosphate, pH 7.0. Four scans. All spectra were recorded at 275 K.

correlation time of approximately 40 ns by using the analysis of McCalley et al. (1972). In contrast to the immobile short PROXYL spin-label, the TEMPO spin-label, connected via the same acetamide linkage to the sulfhydryl, has a high-field to low-field peak separation of only 60.6 G (Figure 2C). This compares to a rigid glass limit value of 70 G for the same spin-label (Crews et al., 1987) and indicates an effective correlation time of only 9 ns.

Separation of Nitroxide Spin-Labels within the Tetramers. Dipole-dipole interaction between nearby nitroxides can cause splitting of the ESR transitions (Carrington & Maclaughlin, 1967; Beth et al., 1984). With the protonated <sup>14</sup>N spin-labels used here, the line widths may be too broad to resolve the fine structure present. Nevertheless, evidence for such dipolar interaction can be gauged from the half-height line width of the high- and low-field peaks of the spectrum. Line widths of  $4.4 \pm 0.2$  G are found for spin-label I, which are similar to those for isolated spin-label under rigid glass limit conditions. The splitting, or apparent broadening for unresolved lines, depends upon the orientation of the two nitroxide coordinate axis systems relative to one another. By use of the program MENO developed by Eaton et al. (1983), spectra were simulated for different nitroxide orientations and separations. For both labels oriented at the magic angle (54° 44') relative to the



FIGURE 3: 9.4-GHz ESR spectrum of 9.3  $\mu$ M methylamine-treated human  $\alpha_2$ M spin-labeled at the sulfhydryl groups of Cys-949 with spin-label II. The spectrum was recorded at 265 K in 50% w/w glycerol and 0.05 M sodium phosphate, pH 7.0.

interelectron axis, which results in minimum sensitivity to dipolar interaction in the extreme regions of the spectrum, it was estimated that an approach of approximately 16 Å or less would be readily detectable in broadening of the lines. For the N-O axes oriented orthogonal to, and with the nitrogen  $P_z$  orbitals oriented along, the interelectron axis (a geometry that results in maximum dipolar interaction in the extreme regions of the spectrum), an approach of 24 Å or less would be readily detectable since a separation of 25 Å would result in half-height line widths of 5.3 G. In the absence of a knowledge of the relative orientation of the nitroxides to one another, an average value of the above maximum distances of closest approach consistent with the experimental absence of broadening will be taken as a close approximation to the true value of the minimum separation. This average value is 20 Å.

To permit the same type of analysis to be applied to the longer spin-label II, it was necessary to slow its motion from 40 ns to a value closer to that necessary to give a rigid limit spectrum. This was done by changing the solvent to 50% w/w glycerol and recording the spectrum at 265 K. The ESR spectrum is shown in Figure 3 and corresponds to rigid glass limit conditions. As with spin-label I, the high- and low-field peak line widths are approximately 4 G and thus show no evidence for dipole-dipole interaction. The nitroxides are therefore also greater than 20 Å apart in this derivative.

Perturbation of Bait Region 1H NMR Signals. It has previously been shown that six aromatic residues within the bait region, the short stretch of polypeptide that contains the sites of proteolytic cleavage, give rise to resolvable, narrow <sup>1</sup>H NMR signals (Gettins & Cunningham, 1986; Arakawa et al., 1986). These residues are phenylalanine 684, tyrosine 685, and histidines 675, 694, 699, and 704, although the assignment to specific histidines within the group has not been made. The resonances from these residues afford a ready means of estimating the separation between the nitroxide-labeled SH from the cleaved thiol ester and the bait region by determining if there is any broadening of the resonances by the paramagnetic nitroxide spin-label. Such broadening is strongly distance dependent, falling off as the inverse sixth power of the separation. Figure 4A shows the aromatic region of the CPMG <sup>1</sup>H NMR spectrum of  $\alpha_2$ M labeled with iodoacetamide. C(2) and C(4) resonances from the four bait region histidines, and one other histidine, and from Phe-684 and Tyr-684 are clearly seen [there is some overlap of C(2) <sup>1</sup>H resonances at this pH and the C(4) resonances are never completely resolved from one another]. Figure 4B shows a comparable spectrum of  $\alpha_2$ M labeled with the paramagnetic 3-(2-iodoacetamido)-PROXYL. With the exception of the C(2) and C(4) proton resonances of one histidine, all the resonances are broadened. The extent of broadening differs for each resonance and may be approximately assessed from a difference spectrum between the spectra of iodoacetamide and nitroxide-labeled  $\alpha_2M$  samples.

2908 BIOCHEMISTRY GETTINS ET AL.

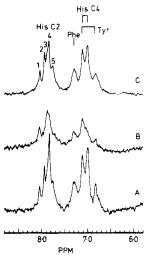



FIGURE 4: Effect of nitroxide spin-label I on the 400-MHz <sup>1</sup>H NMR spectra of methylamine-treated human  $\alpha_2 M$ , recorded by using a CPMG pulse sequence, showing the aromatic region resonances from the bait region. The histidine C2 resonances are numbered 1–5 for ease of reference. Spectra were recorded at 298 K. (A) Control spectrum of  $\alpha_2 M$  labeled at SH with iodoacetamide. 18 000 scans, 23.0  $\mu M$   $\alpha_2 M$ . (B) Spectrum of 20  $\mu M$   $\alpha_2 M$  labeled with I. 18 000 scans. (C) Sample B treated with 3 mM ascorbate. 18 000 scans.

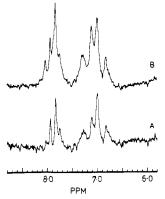



FIGURE 5: Difference spectrum between spectra of paramagnetic and diamagnetic  $\alpha_2 M$  samples, shown in parts A and B of Figure 4. (A) Difference spectrum. (B) Same as Figure 4a for comparison.

This difference is shown in Figure 5.

Since the pulse sequence used to obtain these spectra emphasizes narrow resonances over broad ones, it is not possible to use reduction in peak height as an accurate indicator of increase in line width. Nevertheless, the comparatively small delay between the initial 90° pulse and data sampling (12 ms) makes change in peak height a rough approximation to change in line width for these narrow resonances, which should not be in error by more than 50%. Such an error in the line width would result in only a 7% error in r because of the  $r^{-6}$  relationship between the two. The estimated line widths, changes in line width, and separations are given in Table I. In calculating values for r, the Solomon-Bloembergen equation was used (Solomon, 1955; Bloembergen, 1957), with the assumption that the second, contact, term is unimportant; this assumption is almost certainly valid here given the values found for r. The only other unknown is the correlation time for the electron spin-nuclear spin vector. As discussed above, the rotational correlation time appropriate to  $\alpha_2 M$  and thus to a nitroxide group held rigidly by  $\alpha_2 M$  is  $7.2 \times 10^{-7}$  s. The electron spin relaxation time is even longer ( $\sim 12 \mu s$ ) (Fajer et al., 1986). The bait region residues, however, possess greater freedom of movement than the bulk of  $\alpha_2 M$ . It can be estimated that a rotational correlation time of 10 ns is needed to

Table I: Broadening of  ${}^{\rm I}H$  Resonances of Bait Region Residues by Nitroxide Label I

| resonance  | line width (Hz) <sup>a</sup> | Δ peak<br>height <sup>b</sup> | $\Delta$ line width $(Hz)^c$ | r <sup>d</sup><br>(Å) |
|------------|------------------------------|-------------------------------|------------------------------|-----------------------|
| His-1 C(2) | 16                           | 0.30                          | 7                            | 17                    |
| His-2 C(2) | 16                           | 0.62                          | 26                           | 14                    |
| His-3 C(2) | 18                           | 0                             | 0                            | >23                   |
| His-4 C(2) | 18                           | 0.62                          | 29                           | 13                    |
| His-5 C(2) | 26                           | 0.62                          | 42                           | 12                    |
| Phe        | 60                           | 0.48                          | 55                           | 12                    |
| Tyr-me     |                              |                               |                              |                       |
| Tyr-o      | 40                           | 0.56                          | 50                           | 12                    |

<sup>a</sup> Half-height line width in diamagnetic control CPMG spectrum. The error is estimated to be  $\pm 2$  Hz. <sup>b</sup> Fractional reduction in peak height in CPMG spectrum of  $\alpha_2 M$  labeled with I. <sup>c</sup> Increase in line width in paramagnetic spectrum estimated from reduction in peak height and subject to an error of  $\leq 50\%$ . <sup>d</sup> Separation between nitroxide and proton calculated from Solomon-Bloembergen equation. The error is estimated to be no more than 7%. <sup>e</sup>Resonance overlaps with histidine C(4) proton resonances.

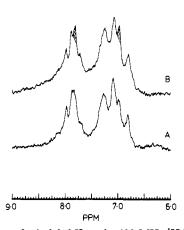



FIGURE 6: Effect of spin-label II on the 400-MHz  $^1$ H NMR CPMG spectrum of  $\alpha_2$ M. Each spectrum is 40 000 scans and was recorded at 298 K. The resonances from histidine 4 that are broadened are shaded. (A)  $\alpha_2$ M, 20.2  $\mu$ M, labeled with II. (B) Sample A treated with 3 mM ascorbate.

account for the narrow  $^1H$  NMR signals observed from these residues (Gettins & Cunningham, 1986). This correlation time will thus dominate the electron spin-nuclear spin vector correlation time and is used in estimating the values of r given in Table I.

To confirm that the perturbation of the  $^1H$  resonances is due only to the paramagnetic broadening by the nitroxide, the nitroxide was reduced with 3 mM ascorbate and the  $^1H$  NMR spectrum recorded. This is shown in Figure 4C. The spectrum obtained shows almost complete recovery of intensity as judged by comparison with the spectrum of iodoacetamide-labeled  $\alpha_2M$  (Figure 4A). There are small differences between parts A and C of Figure 4, notably in a smaller relative peak height for His-4 C(2) and the tyrosine resonance at 6.8 ppm. These differences are most likely due to incomplete reduction of the spin-label. Experimental limitations precluded simultaneous ESR and NMR observations on the sample to prove this unambiguously.

In contrast to the pronounced effect that spin-label I has on the  $^1H$  NMR spectrum of the bait region, the longer spin-label affects only one of the histidine residues. The  $^1H$  spectrum of  $\alpha_2M$  labeled with this nitroxide is shown in Figure 6A and that of the same sample treated with ascorbate is shown in Figure 6B. Only the C(2) and C(4) proton resonances of histidine 4 are broadened.

The effects of label III on the <sup>1</sup>H NMR spectrum of  $\alpha_2$ M were not examined, since this label appears to be the most

mobile of the three and may have a poorly defined position.

#### **DISCUSSION**

Four main conclusions can be drawn from the results presented in this paper. They concern (1) the environment of the cysteine residue formed upon hydrolysis of the thiol ester linkage, (2) the separation between the four such cysteines formed in the  $\alpha_2 M$  tetramer, (3) the proximity of the bait region and thiol ester in methylamine-treated  $\alpha_2 M$ , and (4) the structure of the bait region.

Environment of Cys-949. Spin-label I attached to Cys-949 of  $\alpha_2 M$  is held firmly by the protein, as judged by the appearance of its ESR spectrum (Figure 2), even though there are three bonds about which free rotation might occur, not including the methylene group of the cysteine. This suggests that the free cysteine occurs at the bottom of a cavity deep enough to hold the pyrrolidyl moiety ( $\sim 9$  Å). Extension of the spacer group by 4 Å, as in label II, places the nitroxide ring in a less restricted environment and results in greater motional freedom for this terminal moiety, though its motion is still somewhat restricted, as shown by its correlation time of 40 ns. Another explanation for the rigidity of I is a specific interaction on a more exposed surface. This is considered less likely since there is such a large difference in mobility between the chemically nearly identical labels I and III.

Location of the thiol group at the bottom of a narrow cavity, as suggested here, is consistent with recent fluorescence studies (Larsson et al., 1987), which concluded that an N-[(acetylamino)ethyl]-8-aminonaphthalene-1-sulfonic acid group attached to Cys-949 in methylamine-treated human  $\alpha_2 M$  is partially buried, though still accessible to solvent.

Somewhat surprising is the difference in mobilities between labels I and III attached to  $\alpha_2 M$ . These are very similar in length and chemical composition, and yet III is moderately mobile while I is rigid. This may reflect subtle differences in allowed conformation for the 5- and 6-membered spin-labels resulting from interactions with the walls of the cavity. It should be pointed out that labeling reagent I was racemic, though no indication of two distinct bound species was seen in the ESR spectrum. Thus, it is not known whether there is preferential reaction of  $\alpha_2 M$  with one stereoisomer or whether both stereoisomers react and are held equally firmly.

Separation of the Four Thiol Groups. The absence of any indication of dipole-dipole interaction between spin-labels in the same  $\alpha_2 M$  tetramer labeled with four such paramagnetic groups (Figures 2 and 3) requires that the nitroxides be more than about 20 Å apart. Since spin-label I is firmly held by  $\alpha_2$ M and spin-label II can be immobilized by an increase in solvent viscosity, it is likely that the labels have well-defined locations rather than being able to probe a complete sphere of radius equal to the dimensions of the label. Given the approximate length of label I (9 Å), the extreme values for separation of pairs of SH groups are between >2 Å—for nitroxides pointed away from one another—and >38 Å—for nitroxides pointed toward one another (Figure 7). These values are consistent with an earlier fluorescence energy transfer experiment (Tourbez & Pochon, 1986) that determined a separation of 20 Å between donor and acceptor fluorophores linked to SH groups within the "half-molecule" of  $\alpha_2$ M. This value also indicates a closer or greater separation of the SH groups depending on whether the fluorophores are between the SH groups or outside them. The value of 20 Å obtained by these authors is based upon a value of  $K^2$  (used in calculating  $R_0$ , the separation necessary for 50% efficiency of energy transfer) of  $^{2}/_{3}$ . This value is valid when donor and acceptor are freely rotating (Förster, 1959). In view of the

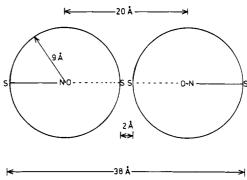



FIGURE 7: Schematic representation of maximum and minimum separation of pairs of SH groups consistent with an inter-nitroxide separation of 20 Å, the *minimum* expected nitroxide separation. The SH may be anywhere along the circumference of the circle centered on the nitroxide.

present finding of the rigidity with which label I is held and also the finding of Larsson et al. (1987) that a different fluorophore attached to the same sulfhydryl is partly buried, the assumed value of  $K^2$  and hence of the interfluorophore separation may be in error. If the maximum value of  $K^2$  of 4 is used instead, the calculated separation is, however, only increased to 27 Å. A value of  $K^2$  between  $^2/_3$  and 4 and hence an interfluorophore separation between 20 and 27 Å might better accommodate the ESR data with the longer label II, since it is likely that the nitroxides point more toward one another than away from one another within the half-molecule. This orientation is considered likely on the basis of the expected location of caged proteases within the hollow  $\alpha_2 M$  molecule (see below) and the ability of proteases to form covalent cross-links between the glutamyl residues generated from the thiol esters of two  $\alpha_2 M$  subunits and lysine residues of the protease (Sottrup-Jensen et al., 1983). For such an orientation the nitroxides in  $\alpha_2M$  labeled with II might be as much as 7.6 Å closer together, yet they must still be greater than 20 Å apart to account for the absence of dipole-dipole interaction.

The distances calculated here apply to separations between SH groups both within the same half-molecule and in different halves of the molecule. While our findings do not disagree with those of Tourbez and Pochon (1986) that SH groups in different half-molecules may be 80 Å apart, we would like to point out that their calculations, involving energy transfer between labeled SH and labeled trapped chymotrypsin, were based upon a unique and static location for the protease and hence for the fluorophore in the enzyme's active site. Recently, we demonstrated that trapped chymotrypsin is loosely caged by  $\alpha_2$ M and is free to rotate within the cage (Crews et al., 1987). If this finding were taken into account, the value of 80 Å might have to be substantially reduced.

Proximity of the Bait Region to Cys-949. The substantial broadening of  $^{1}H$  resonances from the bait region of  $\alpha_{2}M$  by label I attached to the SH moiety of Cys-949 demonstrates the closeness of these two crucial structures in the protein. Although the calculated values of r may be in error from inaccurate estimations of the broadenings or from the effective correlation time not being precisely 10 ns, the error in r is unlikely to be more than 10-20% because of the  $r^{-6}$  relationship with  $\tau_{c}$  and  $1/T_{2M}$ . In a protein the size of  $\alpha_{2}M$ —estimated from electron micrographs to be a hollow barrel 170 Å long and 60 Å in diameter (Schramm & Schramm, 1982)—a separation of 11-17 Å (Table I) represents a relatively close approach of the two groups. This is the first demonstration that these two groups are close together in any form of  $\alpha_{2}M$ .

Structure of the Bait Region. It is of great significance for the structure of the bait region that all six aromatic amino acid

2910 BIOCHEMISTRY GETTINS ET AL.

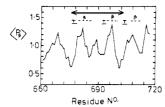



FIGURE 8: Chou and Fasman secondary structure prediction for the region of human  $\alpha_2 M$  that includes the bait region. The heavy bar indicates the bait region.  $\beta$  indicates  $\beta$  strand, and T signifies  $\beta$  turn. Note the pronounced troughs on either side of the two-strand  $\beta$  structure in the bait region corresponding to the sequences His-Gly-Pro-Glu and Glu-Glu-Pro-His, which contain three and four  $\beta$  breaker or strong  $\beta$  breaker residues, respectively.

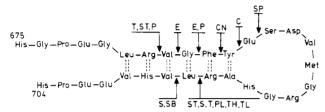



FIGURE 9: Proposed secondary structure of the bait region loop of human  $\alpha_2 M$  showing the sites of proteolytic cleavage of various enzymes. The cleavage sites are taken from Sottrup-Jensen et al. (1984). Abbreviations: T, bovine trypsin; ST, Streptomyces griseus trypsin; P, papain; E, porcine elastase; CN, calf chymosin; C, bovine chymotrypsin; SP, Staphylococcus aureus V8 protease; PL, human plasmin; TH, bovine thrombin; TL, thermolysin; S, subtilisin; SB, Streptomyces griseus protease B.

side chains are within 11-17 Å of the nitroxide. These marker residues are distributed over a 26-residue region in  $\alpha_2 M$ . Their narrow line widths in both native and methylamine-treated  $\alpha_2$ M indicate high mobility and a location in a flexible loop of polypeptide (Gettins & Cunningham, 1986). If such a stretch of polypeptide were extended, the first and last of the four histidines might be as much as 110 Å apart. However, that they are all in a narrow spread of distances from the rigid nitroxide label I strongly suggests that the exposed flexible bait region is a relatively compact loop. In addition, the observed chemical shifts are not those of random coil residues (Gettins & Cunningham, 1986) and support a folded structure. Figure 8 shows the results of a Chou and Fasman (1978) secondary structure prediction on the bait region of human  $\alpha_2$ M and its flanking sequences. There is a strong prediction of two stretches of  $\beta$  secondary structure with an intervening  $\beta$  bend. The two stretches of  $\beta$  structure are terminated by tetrapeptides containing effective  $\beta$  breakers.

We propose that the bait region of  $\alpha_2 M$  forms an exposed loop of polypeptide in antiparallel  $\beta$  conformation (Figure 9) projecting into solution and accessible to proteases from all sides. Since there is no change at all in the <sup>1</sup>H NMR signals from the bait region before and after treatment with methylamine (Gettins & Cunningham, 1986), the structure proposed here would also apply to native  $\alpha_2 M$ . The absence of change in the <sup>1</sup>H spectrum, despite a large conformational change in α<sub>2</sub>M, supports a distinct and stable structure for the bait region. The sites of cleavage by different proteases are indicated, and all but one fall within the proposed  $\beta$ -sheet region. A mechanism for triggering the conformational change in  $\alpha_2$ M might then be as follows. Cleavage of the bait region at any of the positions within the  $\beta$  sheet results in introduction of a charged carboxyl and a charged amino group. Such groups might be expected to disrupt the small  $\beta$  sheet. If the bait region connects two domains of the protein, such a disruption of structure in the connecting region could readily cause a local

conformational rearrangement. Since the thiol ester is close by, its accessibility to solvent and to proteases could easily be increased so that reaction with protease or with solvent water could occur. The last step is the crucial one for the trapping reaction. This mechanism explains how different proteases, cleaving at quite different sites within the bait region, could result in identical trapping reactions.

Summary. The Cys-949 residues that form the thiol ester groups in human  $\alpha_2 M$  are located in a constricted cavity in the methylamine-induced conformationally altered form of  $\alpha_2 M$ . Spin-labels attached to the four Cys-949 residues in the tetramer are at least 20 Å apart and show no dipole—dipole interaction with one another. The functionally important bait region is very close to the thiol ester group and may well form a compact loop of two strands of  $\beta$  sheet. We propose that proteolytic cleavage anywhere is this loop disrupts the loop and is the common trigger for cleavage of the thiol ester and trapping of the protease.

#### **ACKNOWLEDGMENTS**

We thank Brenda Crews for excellent technical assistance in isolation of  $\alpha_2M$  and preparation of the spin-labeld derivatives and Susan Heaver for typing the manuscript.

#### REFERENCES

Arakawa, H., Muto, Y., Arata, Y., & Ikai, A. (1986) Biochemistry 25, 6785-6789.

Barrett, A. J. (1981) Methods Enzymol. 80, 737-754.

Barrett, A. J., & Starkey, P. M. (1973) Biochem. J. 133, 709-724.

Barrett, A. J., Brown, M. A., & Sayers, C. A. (1979) *Biochem.* J. 181, 401-418.

Beth, A. H., Robinson, B. H., Cobb, C. E., Dalton, L. R.,
Trommer, W. E., Birktoft, J. J., & Park, J. H. (1984) J.
Biol. Chem. 259, 9717-9728.

Björk, I., & Fish, W. W. (1982) *Biochem. J.* 207, 347-356. Bloembergen, N. (1957) *J. Chem. Phys.* 27, 572-573.

Branegard, B., Österberg, R., & Sjöberg, B. (1982) Eur. J. Biochem. 122, 663-666.

Carrington, A., & MacLaughlin, A. D. (1967) in *Introduction to Magnetic Resonance*, pp 115-131, Harper & Row, New York.

Chou, P. Y., & Fasman, F. D. (1978) Annu. Rev. Biochem. 47, 251-276.

Crews, B. C., James, M. W., Beth, A. H., Gettins, P., & Cunningham, L. W. (1987) *Biochemistry 26*, 5963-5967.

Dangott, L. J., & Cunningham, L. W. (1982) Biochem. Biophys. Res. Commun. 107, 1243-1251.

Dangott, L. J., Puett, D., & Cunningham, L. W. (1983) Biochemistry 22, 3647-3653.

Davis, B. (1964) Ann. N.Y. Acad. Sci. 121, 404-427.

Eaton, S. S., More, K. M., Sawant, B. M., Bogmel, P. M., & Eaton, G. R. (1983) J. Magn. Reson. 52, 435-449.

Fajer, P., Thomas, D. D., Feix, J. B., & Hyde, J. S. (1986) Biophys. J. 50, 1195-1202.

Förster, T. (1959) Discuss. Faraday Soc. 27, 7-17.

Gettins, P., & Cunningham, L. W. (1986) Biochemistry 25, 5011-5017.

Hall, P. K., & Roberts, R. C. (1978) Biochem. J. 171, 27-38.
Howard, J. B. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2235-2239.

Laemmli, U. K. (1970) Nature (London) 227, 680-685. Larsson, L.-J., Lindahl, P., Hallen-Sandgren, C., & Björk, I.

(1987) Biochem. J. 243, 47-54. McCalley, R. C., Shimshick, E. J., & McConnell, H. M. (1972) Chem. Phys. Lett. 13, 115-119. Meiboom, S., & Gill, D. (1958) Rev. Sci. Instrum. 29, 688-691.

Mortensen, S. B., Sottrup-Jensen, L., Hansen, H. F., Petersen, T. E., & Magnusson, S. (1981) FEBS Lett. 135, 295-300. Pochon, F., Amand, B., Lavalette, D., & Bieth, J. (1978) J.

Biol. Chem. 253, 7496-7499.

Salvesen, G. S., & Barrett, A. J. (1980) Biochem. J. 187, 695-701.

Salvesen, G. S., Sayers, C. A., & Barrett, A. J. (1981) Biochem. J. 195, 453-461.

Schramm, H. J., & Schramm, W. (1982) *Hoppe-Seyler's Z. Physiol. Chem.* 363, 803-812.

Solomon, I. (1955) Phys. Rev. 99, 559-565.

Sottrup-Jensen, L., Petersen, T. E., & Magnusson, S. (1980) *FEBS Lett.* 121, 275-279.

Sottrup-Jensen, L., Lønblad, P. B., Stepanik, T. M., Petersen, T. E., Magnussen, S., & Jornvall, H. (1981) FEBS Lett. 127, 167-173.

Sottrup-Jensen, L., Hansen, H. F., & Christensen, U. (1983) Ann. N.Y. Acad. Sci. 421, 188-208.

Sottrup-Jensen, L., Stepanik, T. M., Kristensen, T., Wierzbicki, D. M., Jones, C. M., Lønblad, P. B., Magnusson, S., & Petersen, T. E. (1984) J. Biol. Chem. 259, 8318-8327.

Strickland, D. K., & Bhattacharya, P. (1984) Biochemistry 23, 3115-3124.

Tourbez, M., & Pochon, F. (1986) Biochimie 68, 1079-1086.

# Bovine Plasminogen Activator Inhibitor 1: Specificity Determinations and Comparison of the Active, Latent, and Guanidine-Activated Forms<sup>†</sup>

Carla M. Hekman<sup>‡,§</sup> and David J. Loskutoff\*,<sup>‡</sup>

Department of Immunology, Scripps Clinic and Research Foundation, La Jolla, California 92037, and Department of Chemistry, University of California, San Diego, La Jolla, California 92093

Received June 12, 1987; Revised Manuscript Received December 23, 1987

ABSTRACT: The plasminogen activator inhibitor 1 (PAI-1) synthesized and released by cultured bovine aortic endothelial cells is present in conditioned medium in a latent form that can be activated by guanidine hydrochloride [Hekman, C. M., & Loskutoff, D. J. (1985) J. Biol. Chem. 260, 11581–11587]. The purified, guanidine-activated PAI-1 was shown to inhibit both plasmin and trypsin in a dose- and time-dependent manner. Second-order rate constants for these interactions were calculated to be  $6.6 \times 10^5$  and  $7.0 \times 10^6$  M<sup>-1</sup> s<sup>-1</sup> for plasmin and trypsin, respectively. Experiments were conducted to compare the inherently active and the guanidine-activated forms of PAI-1. The two active forms had similar kinetic parameters for interaction with urokinase ( $K_d$ , 0.3 pM;  $k_{assoc}$ ,  $1.5 \times 10^8$  M<sup>-1</sup> s<sup>-1</sup>) and were both inactivated upon treatment with acid or base and by incubation at 37 °C. The latent form was relatively stable when incubated under similar conditions. The decrease in PAI-1 activity upon incubation at 37 °C was partially restored by a second treatment with guanidine hydrochloride. However, the degree of recovery decreased as a function of incubation time at 37 °C. These data suggest that active and guanidine-activated PAI-1 represent a single form of PAI-1. Incubation of this form at 37 °C yields two distinct populations of inactive PAI-1, one capable of reactivation and another that appears to be irreversibly inactivated.

The specific lysis of fibrin is catalyzed by the protease plasmin that exists in plasma as the inactive zymogen, plasminogen (Collen, 1980). The generation of plasmin occurs through the limited cleavage of plasminogen by the plasminogen activators, urokinase (UK), and tissue plasminogen activator (tPA). In addition to their role in fibrinolysis, the plasminogen activators (PA's) have been implicated in various other biological processes including ovulation (Beers et al., 1975; Reich et al., 1985; Ny et al., 1985), cell migration (Ossowski et al., 1975), epithelial differentiation (Henrickson & Astrup, 1967), and tumor invasion (Dano et al., 1985). Thus, precise regulation of PA activity is essential to the maintenance not only of hemostasis but also of other biological processes. This control is accomplished through several dif-

ferent mechanisms including the formation and resolution of fibrin (Collen, 1980; Korninger & Collen, 1981), the controlled synthesis and secretion of the PA's (Loskutoff, 1986), and the presence of specific PA inhibitors (PAI's). These recently discovered PAI's have been detected in tissues (Holmberg et al., 1978), cells (Loskutoff & Edgington, 1977; Dosne et al., 1978; Coleman et al., 1982; Emeis et al., 1983; Levin, 1983; Loskutoff et al., 1983; Badenoch-Jones et al., 1985; Laug, 1985; Kruithof et al., 1986; Vassalli et al., 1984), and plasma and serum (Chmielewska et al., 1983; Kruithof et al., 1984; Verheijen et al., 1984a; Thorsen et al., 1984; Erickson et al., 1986). Recent reports correlating high plasma PAI levels with increased incidence of deep vein thrombosis and myocardial

<sup>&</sup>lt;sup>†</sup>This work was supported by grants to D.J.L. from the National Institutes of Health (HL 22289, HL 16411) and from Eli Lilly and Co.

<sup>\*</sup>Address correspondence to this author at the Department of Immunology (IMM14), Scripps Clinic and Research Foundation, 10666 N. Torrey Pines Road, La Jolla, CA 92037.

<sup>&</sup>lt;sup>1</sup>Scripps Clinic and Research Foundation.

University of California, San Diego.

<sup>&</sup>lt;sup>1</sup> Abbreviations: PA, plasminogen activator; PAI, plasminogen activator inhibitor; tPA, tissue plasminogen activator; UK, urokinase; PBS, phosphate-buffered saline (0.14 M NaCl, 0.01 M sodium phosphate, pH 7.2); SDS, sodium dodecyl sulfate; PAGE, polyacrylamide gel electrophoresis; p-APMSF, p-amidinophenylmethanesulfonyl fluoride; NPGB, p-nitrophenyl p-guanidinobenzoate hydrochloride; DTNB, 5,5'-dithiobis(2-nitrobenzoic acid); Tris, tris(hydroxymethyl)aminomethane; lgG, immunoglobulin G.